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1 Introduction

In class, we mentioned that the justification for Lagrangian mechanics is some-
thing called Hamilton’s Principle. Usually, Hamilton’s principle is known as
the “principle of least action,” and it’s assumed to say the following: The path
followed by a system in transitioning from a point ( �x1, t1) to a point ( �x2, t2) is
the path which minimizes the action, S[x(t)] =

∫ t2
t1

Ldt. In these notes, I will
briefly explain why this is incorrect, what the correct statement is, and why
(physically) the world works that way. In addition, I’ll explain how we know
the second end-point of the trajectory – that is, how the system decides “where
to end up” so that we can calculate the path it takes to get there.

2 Hamilton’s Principle

Historically speaking, Hamilton formulated his eponymous principle after La-
grangian mechanics had already been conceived of. It is possible to derive
Lagrangian mechanics directly from Newtonian mechanics, but formulated in
that way it contains no new insights on how the universe works. Hamilton no-
ticed that the Lagrangian formulation could also be derived by assuming that
that all physical paths are minimum-action paths, and therefore proposed the
axiomatic principle of least action (that is, it’s axiomatic because it can’t be
proved, and must be assumed).

You may recall that the way Lagrangian mechanics works is by extremizing
the action along a path by setting a sort of derivative δS

δε (the derivative of the
action with respect to some parameter of the path) to zero, in analogy with
the technique for finding the minimum of a function in calculus. We mentioned
that this technique, as in calculus, only guarantees that we have found one of
three possibilities: a minimum, a maximum, or a point of inflection (if you don’t
remember what a point of inflection is, then consider that f(x) = x3 has one at
x = 0; it’s neither a min nor a max, but df

dx = 0.) Generally, it’s assumed that
if we find a path where δS

δε = 0, then according to Hamilton’s principle it’s a
minimum.

In reality, this is not true. Frequently, the path found by applying the
Euler-Lagrange equations to the action of a physical system is either a point
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of inflection or a local maximum! This immediately begs the question: why
does the method work? The answer is simple; Hamilton’s principle as stated
previously is too restrictive. It should be restated as the principle of stationary
action, saying that the path that a system follows is one where the action is
stationary with respect to variation in the path – that is, precisely that δS

δε = 0!
Thus, the Lagrangian method always works.

Why is this the case? The principle of least action is, at least, intuitively
appealing – it’s elegant and satisfying that nature should choose to minimize
some quantity, even if we don’t know why. This idea of stationary action is
much less satisfying – it seems almost unfairly simple that just when it turns
out that our method for finding minima is flawed because it also finds maxima
and points of inflection, it also turns out that nature will accept either of the
others as well! The answer comes from quantum mechanics.

3 A Brief Justification for Stationary Action

Since this is not a class in quantum mechanics, all I’ll attempt to do is give a
brief rationale for why the paths with stationary action are the ones that the
system follows. There are several perspectives on quantum mechanics, each of
which yields the same results. This is analogous to the way in which we can
derive the same results for a classical system using Newton’s laws, Lagrangian
techniques, or Hamilton’s equations of motion.

One of these perspectives is called the path-integral approach. Using this ap-
proach, we can calculate the probability for a system, in the state corresponding
to x = x1 at time t = t1, to be in the state x = x2 at time t = t2. The way we
do this is as follows:

* Form a set P containing every conceivable path x(t) that connects (x1, t1)
to (x2, t2).
For every path x(t) ∈ P, calculate the action S[x(t)]. Notice that we’ve
mapped each path (a function) to an action (a real number).

** Define the amplitude functional A[x(t)] to be the complex exponential of
the action: A[x(t)] = eih̄−1S[x(t)].

* Now, add up A[x(t)] for every x(t) ∈ P, to get Atotal(x2, t2;x1, t1) =∫
all paths x(t) eih̄−1S[x(t)].

* Finally, the probability for the system to move from x1 to x2 is just
|Atotal|2, the norm-squared of the amplitude.

Now, how does this esoteric procedure yield the principle of stationary ac-
tion? Well, consider the behavior of the function f(S) = eiS . As S increases,
f(S) oscillates around the unit circle in the complex plane. If you’re not famil-
iar with complex functions, just think of f(S) = sin(S); it’s pretty much the
same for our purposes, except that since sin(S) is a real function, it oscillates
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up and down in the real numbers. Now, what happens when we integrate this
oscillating function of the action over all paths?

Well, the graphs on the next page should illustrate it. Basically, wherever
the action is changing, the integrand eiS is oscillating, and the integral over that
region practically vanishes. In the example on the next page, I’m parametrizing
my “paths” by a variable called y (not to be confused with the x(t) we were
talking about before; this is more like ε, but it’s easier to use y in Maple, where
these plots were done), and the “action” is S = y2. I’ve shown a graph of the
imaginary part of the amplitude, �eiS(y) = sin(S(y)), and a graph of its integral
over an interval from −∞tox. Notice that the integral pretty much just wiggles
around without going anywhere until we get to around x = 0. Why x = 0?

Well, at x = 0, the derivative of S with respect to the parameter y is zero
– which means that the action doesn’t depend on the path locally. That is –
the action is stationary at y = 0! Because the integrand isn’t oscillating around
any more, this path contributes the lion’s share of the final integral.

What do we conclude? That the particle has a significant probability of
going from x1 to x2 if and only if there exists at least one path (connecting x1

to x2) around which the action is stationary. It doesn’t have to be minimal, it
doesn’t have to be extremal, merely stationary. In classical mechanics, we take
certain limits (h̄ → 0, for those of you who like quantum mechanics) so that
the phrase “significant probability of” can be replaced by “any possibility of”.
That is, likelihoods become certainties. This is where we get the principle of
stationary action from.
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4 How the particle knows where to go

Finally, I want to address a more practical question. When we did the calculus of
variations to find the minimum action path, we always assumed fixed endpoints
x1 and x2. How do we know what endpoints to choose? That is, for a given
physical system starting at point (x1, t1), how do we know at which x2 it’s going
to be at time t2 so as to find the stationary-action path between the two?

The answer is twofold. First of all, a particle will not move under any
circumstances between two points that are not connected by a stationary-action
path. That is, if by some chance there does not exist any path of minimum or
stationary action connecting x1 to x2, then the particle will never end up at x2.
This rarely happens, but it is possible – a simple example is a system which
contains a region of infinite potential (positive or negative). The system will
never end up in that region, because every path connecting the starting point to
a point x2 inside a region of infinite potential has infinite action – which means
that there is no minimal or maximal action path. In practice, this is rarely an
issue.

Secondly (and more relevantly), there is a sense in which x2 is not deter-
mined. That is, there is almost always a path of stationary action connecting
any two points x1 and x2. However, we haven’t specified the initial velocity yet!
You must remember that all this path-action stuff is dealing with two points
in configuration space; we aren’t talking about phase space. The end points
x1, x2 determine the path, but that path determines the velocity ẋ(t). So, for
instance, I could analyze the physics of a ball dropped in a gravitational field,
and find a stationary-action path connecting the points z(t1) = 0, z(t2) = 0 –
which would imply that the ball does not fall, but stays in place! However, in
doing so I find that the path which connects those two points requires the initial
velocity of the ball to be upward, which makes sense.

If, however, I insist that the intial velocity of the ball be zero – it’s dropped
from rest – then the only path going anywhere that I can find which is stationary-
action is our old friend, z(t) = − 1

2gt2. Thus, fixing the initial position and
velocity (or momentum) is equivalent to fixing the end points.

This leaves at least one question to which I am not sure I have an answer, so
you may want to think about it. Why is it, if we are going to claim that know-
ing xinitial and ẋinitial is equivalent to xinitial and xfinal, that the conversion
from one set of information (initial position-velocity) to the other (initial-final
position) is always defined and invertible? That is, why is it that I never fail
to find an [x1, x2] pair to satisfy a particular [x1, ẋ1] pair? I don’t know yet...
maybe you can figure it out.

Cheers,
Robin
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